Theoret. chim. Acta (Berl.) 20, 159-170 (1971) 9 by Springer-Verlag 1971

Vibrational Analysis of the Raman, Infrared and Electronic Spectra of Hexafluoromanganate(IV)*

ACHIM PFEIL

Department of Chemistry, University of British Columbia, Vancouver 8, Canada

Received May 14, 1970

From the Raman, infrared and electronic spectra all of the fundamental vibrational frequencies were determined for both the ground state ${}^{4}A_{2q}$ and the excited ${}^{2}E_{q}$. In addition some fundamental frequencies were established for the ${}^{4}T_{2g}$ and ${}^{4}T_{1g}$ excited states from low temperature absorption spectra.

Aus den Raman-, Infrarot- und Elektronenspektren wurden alle Grundschwingungsfrequenzen für den Grundzustand ⁴A_{2q} und den angeregten ²E_q-Zustand bestimmt. Ferner wurden noch einige der entsprechenden Größen für die angeregten Zustände ⁴T_{zg} und ⁴T_{1g} aus Tieftemperatur-Absorptionsspektren ermittelt.

Toutes les fréquences fondamentales de vibration ont été déterminées pour l'état fondamental A_{2g} et l'état excité E_q à partir des spectres Raman, infra-rouge et électronique. De plus, certaines fréquences fondamentales des états excités ⁴T₂₀ et ⁴T₁₀ ont été obtenues à partir des spectres d'absorption à basse température.

Introduction

A variety of molecular Cr (III) complexes exhibit a rich vibrational structure associated with the spin-forbidden ${}^2E \rightarrow {}^4A_2$ transition [1, 2]. Only in a few cases has a vibrational analysis been attempted [1-4]. In general it seems that an unequivocal vibrational analysis is made difficult by the complexity of the problem and the lack of reliable high resolution IR and Raman data for molecular Cr (III) complexes.

Since intra-ligand vibrations of polyatomic ligands also couple to electronic transitions of the d electrons of the complex ion, the most simple system for a theoretical and practical study of this kind would be an octahedral $MA₆$ species, where A is a monoatomic ligand such as a halide. However, no vibrational analysis of such complexes of Cr (III) has yet been made, since in emission only fluorescence is observed [2, 5] (which is structureless) and in the absorption spectra the ²E \leftarrow ⁴ A_2 and ⁴ T_2 \leftarrow ⁴ A_2 transitions overlap [5, 6] thus obscuring any vibrational structure.

The hexafluoride complex of Mn (IV) (isoelectronic with Cr (III)) seems to be more suitable for this study since it does not have the disadvantages mentioned above: there is very strong phosphorescence [7] and the ²E \leftarrow ⁴A₂ and ⁴T₂ \leftarrow ⁴A₂ transitions are well separated. In addition, the Cs salt of the complex seems to be purely octahedral from both crystallographic [8] and optical data.

In this work the fundamental frequencies of the MnF_6^{2-} complex were determined from Raman, IR, electronic absorption and emission spectra. From

 $*$ Dedicated to the memory of Prof. Hans-Ludwig Schläfer.

the data available an analysis of the observed vibrational structure in the transitions from the ${}^4A_{2g}$ ground state to the 2E_g , ${}^4T_{2g}$ and ${}^4T_{1g}$ excited states was attempted. The observed frequencies in the spectra are compared to the fundamental frequencies and combinations thereof which are predicted by group theory.

Experimental

Preparation. The complex K_2MnF_6 was prepared by the method described by Palmer [9]. The crude compound was purified by repeated crystallizations from 48% HF in Pt dishes at 40 °C. $Cs₂MnF₆$ and $Rb₂MnF₆$ were prepared from the potassium salt by cation exchange.

Raman Spectra. They were recorded on a Cary Model 81 Raman spectrophotometer using the $6328~\text{\AA}$ line of a He/Ne laser of Spectra Physics. A special dewar was used to obtain spectra at 85°K [10].

IR *Spectra*. The spectra in the region $200-500$ cm⁻¹ were taken on a Perkin-Elmer 421 and from 250 to 2000 cm⁻¹ on a PE 457. The spectra were obtained in three different ways: pellets of the very finely powdered sample were either fused with polyethylene, pressed with KBr, or mulled with Nujol using AgC1 windows.

Absorption Spectra. Single crystals were employed, grown from 48 % HF by slow evaporation of the solvent. Depending on the optical density required the thickness of the crystals was varied from 30μ to 1 mm. They were mounted in a conventional metal evacuable dewar and the spectrum was taken along the optical axis at different temperatures. At 300 K and 85 K a Cary 14 was used, but at 4.2 K a different apparatus of higher resolution was required: the light of a quartz/iodine lamp was focussed on to the sample and the transmitted light analyzed by a Czerny-Turner grating type monochromator (Spex Instruments, 0.75 m, 10 Å/mm dispersion, blazed at 7500 Å) and detected by an RCA 1 P28 photomultiplier (S 5 characteristics). The signal was amplified with a Brookdeal LA350AC amplifier and displayed on a paper chart recorder.

Emission Spectra. The emission of $Cs₂MnF₆$ was measured using essentially the same apparatus (Czerny-Turner spectrometer) as described above except that the crystal (approx. 50μ thick) was excited with the light of a PEK 110 mercury arc filtered through a 3 cm layer of conc. CuSO₄ in water and a 433 μ interference filter.

The emission spectrum of K_2MnF_6 dissolved in 20% HF (which forms a glass at liquid nitrogen temperature) was obtained with an apparatus of lower resolution. The sample, placed into a flat quartz cell, was excited as described above and the emitted light after passing through an orange filter C 3-67, was recorded with a Jarrell-Ash monochromator Model 82-400 (dispersion 33 A/mm) and an RCA 1 P 28 photomultiplier.

Results

The Raman spectra of the K, Rb and Cs salts of H_2MnF_6 in the form of single crystals and as powders were obtained at room temperature and as powders at -85 °K. The spectra for the Cs and the K complexes are depicted in Figs. 1 and 2 and the band positions are listed in Tables 1 and 2, respectively. No

n Infrared and Electronic Spectra of Hevafluoromang

sh shoulder.

 \sin

shoulder.

$v(R_1)$ Raman (300 °K) single crystal	$v(R_2)$ (85 °K) powder	$v(R_1) + 15803$	$v(R_2) + 15803$	Absorption (300 °K) single crystal	Emission (85 °K) solution	Assignment of $v(R_1)$ and $v(R_2)$
1066 966 891 732 612 486 345 270 $+$ 310 348 383 sh 471 507 600 667 867 906 sh 924 sh	311 342 393 466 507 604	16869 16769 16694 16535 16415 16289 16148 16073 15493 15455 15420 15332 15294 15203 15136 14943 14897 14879	15492 15461 15411 15337 15294 15199	16861 16767 16681 \sim 16540 sh 16410 16283 16147 16071 15842 15733	16303 16067 15848 15723 15456	emission emission emission emission emission emission emission emission v ₅ emission emission emission v_2 v_1 emission emission $v_1 + v_5$ emission

Table 2. *Observed frequencies (in cm*⁻¹) in Raman spectrum of K_2MnF_6 compared to frequencies *observed in emission and absorption spectra (Laser excitation frequency* 15803 *cm*⁻¹)

sh shoulder.

difference was noted in the spectrum of a powder and a single crystal at room temperature. The spectrum of the Cs salt is in good agreement with that published recently [11]. The spectra (Raman and absorption) for the K and Rb salts are identical and the latter was not studied further.

Within experimental error no difference was observed in the IR spectra of the Cs and K complexes. The IR frequencies determined by three different methods (cf. experimental part) agree within 3 %. The observed fundamentals are listed in Table 3.

The emission spectra and the relevant parts of the absorption spectra for the Cs and the K salts are depicted in Figs. 1 and 2 and the band positions are listed in Tables 1 and 2, respectively at the indicated temperatures. The band positions of the absorption spectrum of the Cs complex at 4.5 K are given in Table 5. The presence of pair-lines in the emission spectrum of the Cs complex was tested by comparison with the emission spectrum of Mn^{4+} : Cs₂GeF₆ (mole ratio 5%). No significant difference was observed. Cs_2GeF_6 [12] has the same symmetry as $Cs₂MnF₆$.

Discussion

According to group theory an octahedral $MA₆$ species (with monoatomic ligands A) has three Raman-active vibrations v_1 , v_2 and v_5 of symmetry a_{1g} , e_g , and t_{2g} , respectively, two IR-active vibrations v_3 and v_4 (both t_{1u}) and one inactive vibration $v_6(t_{2u})$ [13].

In the Raman spectrum of an octahedral hexafluoride complex like K_2N i F_6 , for example, three dominant bands at 562, 520 and 310 cm⁻¹ are observed which have been assigned to the three fundamental vibrations v_1 , v_2 and v_5 , respectively [14]. Although Ni(IV) is very similar to $Mn(IV)$ (with respect to valency, mass, radius) the Raman spectrum of MnF $_6^{2}$ differs considerably; there are more bands with remarkably higher intensity, especially in the spectrum of the Cs salt, which was also noted recently by Matwiyoff *et al.* [11]. Furthermore, the Raman spectra of $Cs₂MnF₆$ and $K₂MnF₆$ differ in band positions and intensities (three comparatively narrow bands at 600, 507 and 310 cm^{-1} in the latter are not to be seen at all in the former) which was not observed in the spectra of the same salts of $Ni(IV)$ [14, 15].

High intensities (on an absolute basis) can be caused by a resonance Raman effect $[11, 16]$ or may be due to resonance emission. Such overlapping emission bands are observed, for example, in the Raman spectrum of some Cr(III) complexes $[17]$ and resonance emission (phosphorescence) most probably is responsible for the observed anomalies in the Raman spectra of solid hexafluoromanganates. The complexes are strong phosphors [7] and they emit even at room temperature. Especially the Cs salt is very intense with the same emission quantum yield and lifetime at low (85 °K) and high (300 °K) temperatures [18]. Emission spectra, relevant parts of the absorption spectra together with the Raman spectra are displayed in Figs. 1 and 2. Two distinct features should be noted: (1) to almost every band in the Raman spectrum there corresponds a similar band in the emission spectrum and (2) some absorption bands are very close or overlap with the Raman excitation line.

From both emission and absorption studies, these particular bands were identified as "hot bands" of the spin-forbidden transition $E^2E \leftarrow A$, [7]. In the spectra of the Cs complex, only the origin of this transition at 16030 cm^{-1} is common to both absorption and emission at 4.5 K (cf. Table 4). Higher temperatures populate higher lying vibrational levels from which electronic transitions may occur, thus hot bands appear at 15681 and 15784 cm^{-1} at $300 \text{ }^{\circ}\text{K}$. The latter band is relatively broad (approx. 35 cm^{-1} half-height width) and overlaps directly with the excitation line at 15803 cm^{-1} . The resulting emission superimposes on the (usually weak) Raman lines and obscures the Raman spectrum, hence the anomalies described above are observed. Lowering the temperature to 85 °K has no significant effect on the observed Raman spectrum. The hot band (now shifted to 15794 cm^{-1}) is still present and overlaps with the excitation line.

A different situation is encountered for the K salt. The intensity of the emission is considerably lower due to quenching by traces of Mn^{2+} [7] and there is less overlap with the excitation line. The hot band nearest to the excitation line is at 15842 cm^{-1} and is shifted to 15858 cm^{-1} when the temperature is lowered to 85 °K. This decreases the phosphorescence emission intensity and the three narrow lines (half height width approx. 5 cm^{-1}), before barely discernible from emission bands at room temperature, appear, slightly shifted and with relatively enhanced intensity. They are identified as the fundamental Raman frequencies $v_1 = 600$, $v_2 = 507$ and $v_5 = 310$ cm⁻¹. The relative intensities follow the common pattern $I(\nu_1) \gg I(\nu_2)$, $I(\nu_5)$ which is characteristic for most octahedral MA₆ complexes [19]. The assignments are made by comparison with Raman fie-11"

Fig. 1. Lower part: Raman spectra of $Cs₂MnF₆$ at 300 K with sensitivity 2, slit 1 cm^{-1} sensitivity 2, slit 0.1 cm^{-1} — — —, Raman spectrum at 85 °K with sensitivity 2, slit 5 cm^{-1} ; upper part: Emission spectrum of Cs_2MnF_6 at 300 °K, slit 1 Å ----, 4.5 °K, slit 1 Å absorption spectrum at $300 °K$ — ..., at 85 $°K$ — ...

Fig. 2. Lower part: Raman spectra of K_2MnF_6 at 300 °K, sensitivity 200, slit 3.8 cm⁻¹ — at 85 °K, sensitivity 2000, slit 10 cm^{-1} ; upper part: Emission spectrum of K_2MnF_6 at 85 °K, slit 15 Å in a rigid glass $\frac{1}{\sqrt{1-\frac{1}{$

quencies of similar complexes which are listed in Table 3. In solution (in dil. HF) the emission is very weak [18] and three bands only are observed in the Raman spectrum at $615(v_1)$, $480(v_2)$ and $282(v_5)$ [11].

The IR spectrum is very similar to K_2NiF_6 [14] and no difference was observed **between the spectrum of the K and Cs salts within experimental error. The**

Complex	v_1	v_{2}	v,	v_4	v ₅	v_6	Refs.
$[MnF_6]^{2-}$	600	507	620	340	310	229	this work
$[NiF_6]^{2-}$	562	520	658	345	310	$(220)^{a}$	[14, 15]
$[PdF6]$ ²⁻	578	558					[16]
$[PtF_6]^{2-}$	600	576	571	281	210	$(184)^{a}$	[21, 14]
$[SiF6]$ ²⁻	656		753	485			[22, 20]
[GeF ₆] ²	627	454			318		$[23]$
$[\text{SnF}_6]^{2-}$	593		564		342		$\lceil 24 \rceil$

Table 3. *Fundamental frequency of some hexafluorides with tetravatent cations*

a Calculated frequencies,

spectrum consists of two strong peaks at 340 and 620 cm⁻¹ which were assigned to the two infrared-active fundamental frequencies v_4 and v_3 , respectively, and a weaker band at 1130 cm⁻¹ which is probably the combination $v_3 + v_2$ (calc. 1127). The fundamental v_4 is comparatively narrow (approx. 25 cm⁻¹ half height width) whereas the v_3 is much broader (over 100 cm⁻¹) and it seems that this is a general phenomenon of the hexafluoride complexes [14, 20].

The missing fundamental v_6 is inactive and does not appear directly in either the Raman or IR spectrum. However, v_6 can be determined from the emission spectrum by a vibrational analysis. The vibration v_6 is antisymmetric (t_2) and couples strongly with the $0-0$ transition to give rise to an intense emission band at 15801 cm⁻¹. The fundamental v_6 , determined in this way, is 229 cm⁻¹, which completes the assignment of fundamental frequencies for the complex MnF_6^{2-} . The fundamentals are summarized in Table 6, including their source; The frequency $v_7 = 61$ cm⁻¹, determined from the emission spectrum of Cs₂MnF₆ and $4.5\textdegree K$, is assigned to an (external) lattice mode. An analogous phonon band for the K complex was observed at 80 cm^{-1} from the origin. If v_z is a crystal lattice vibration, the frequency should be affected by a change of cation, as is observed when Cs is exchanged for K. The shift to higher energies is expected if one considers the different densities of the complexes $(\varrho(Cs_2MnF_6)=3.73$, $\rho(K_2MnF_6) = 3.98$ [8]).

In Table 4 the vibrational frequencies of $Cs₂MnF₆$ as observed in the emission spectrum and the relevant parts of the absorption spectrum at $4.5 \textdegree K$ are summarized and compared to the fundamental frequencies of the ground state or suitable combinations thereof. The combinations depend on the intensity mechanism operating which itself depends on the distortion of the crystal from O_h symmetry. An axial field, in the Cs complex, if present at all, has to be small because no splitting of the ${}^{2}E$ level in absorption or emission was detectable with the resolution employed (1 A) and no measurable extinction was visible under the polarizing microscope. Furthermore, a splitting of approx. 10 cm^{-1} for this level was readily detected in the absorption spectrum of the K salt at 85°K which is not cubic but hexagonal [8] and the half height width of the absorption bands is approximately twice the width of the appropriate bands of the Cs salt $(\approx 10 \text{ cm}^{-1}$ at 85 °K). Lack of data at lower temperatures and higher resolution preclude a further investigation of this complex at this point.

In perfect cubic symmetry, magnetic dipole transitions only are allowed. An example of a transition of this type is the $0-0$ transition of $^2E_a \rightarrow ^4A_{2a}$ in Cr^{3+} : MgO which was established by Zeeman-effect studies [25]. The oscillator strength calculated from the absorption was found to be 7.2×10^{-9} [26]. The oscillator strength of the same transition for $Cs₂MnF₆$ calculated from the absorption spectrum of a single crystal at 85 °K is 4.2×10^{-9} which compares quite well with the value mentioned above suggesting that the same type of mechanism (magnetic dipole) is involved.

The intensities of the vibrational satellites are comparatively much stronger (for some by more than an order of magnitude) and they are dependent on temperature. For example, the band at 16244 cm^{-1} in the absorption spectrum (which is assigned as $v_{00} + v_6$ in Table 4) has an oscillator strength of 6.2×10^{-8} at 85 °K. Raising the temperature to 300 °K increases the oscillator strength by a factor of 2 to 1.24×10^{-7} (the increase calculated from the formula [27]:

$$
f = f_0 \coth(hv/2kT), \quad v = 229 \text{ cm}^{-1}
$$

is 1.9) which is strong evidence that the intensities of the satellites are vibrationally induced. By this mechanism certain vibrations which can be determined by group theoretical methods couple with the $0-0$ transition to give rise to the observed vibrational structure. For an octahedral complex the vibrations predicted by group theory are the antisymmetric $t_{1u}(v_3)$ and v_4) and $t_{2u}(v_6)$ vibrations which couple to the $0-0$ transition of ${}^{2}E_{g} \leftarrow {}^{4}A_{2g}$. In Table 4 antisymmetric fundamentals and antisymmetric combinations of fundamentals are compared to the vibrations as observed in the emission and absorption spectrum of a single crystal of $Cs₂MnF₆$ at 4.5 °K. The pertinent results are:

1. The vibrational structure of the emission spectrum can within experimental error be satisfactorily explained by fundamental frequencies or combinations thereof predicted by group theory.

2. There is a "good" mirror-image relationship between the absorption and emission spectrum.

However, since the intensities of the emission bands are not corrected for response of the detecting instrument, the intensities of both spectra cannot be compared and the question "how good" cannot satisfactorily be answered. From an inspection of Fig. 1, it appears that the phosphorescence and the resonance emission spectra have intensity patterns which are similar to the intensity pattern of the absorption spectrum. In the case of such a mirror-image relationship the (natural) radiative lifetime τ_0 can be calculated from the experimental oscillator strength [28, 29] which is 1.6×10^{-2} sec (experimental 2.9×10^{-3} sec [7]). In view of the fact that the quantum yield of phosphorescence is not unity [18] $\tau_{\rm{exn}} < \tau_0$ is expected and the predicted value of τ_0 is the right order of magnitude.

The bands at 17050, 17147 and 17434 cm⁻¹ in the absorption spectrum could not be assigned to transitions associated with the ${}^{2}E_{g}$ state. Since they do not have a counterpart in the emission spectra (emission or resonance emission) they were assigned to vibronic transitions to the ${}^{2}T_{1g}$ state. This would place the origin of the ${}^{2}T_{1a}$ level at approx. 16810 cm⁻¹.

A similar approach was attempted to analyze the vibrational structure of the spin-allowed transitions. However, with the data available a detailed analysis of

I (rel)	$v_{(Abs)}$	$v_{(Abs)} - v_{00}$	Assignment	Calc.	$v_{00} - v_{(\text{Em})}$	$v_{(\text{Em})}$	I (rel)
5.5	16034	Ω	$v_{00}({}^2E_q)$	0	θ	16030	5.3
1.2	16083	49	v_7 ^b		61	15969	1.2
100.0	16259	225	v_6	229	229	15801	100.0
73.4	16369	335	v_4	340	334	15696	76.0
28.5	16645	611	v_3	620	616	15414	10.6
4.2	16686	652	$v_4 + v_5$	650	648	15383	2.5
2.4	16752	718	$v_6 + v_2$	736	720	15310	1.4
7.4	16854	820	$v_{6} + v_{1}$	829	816	15214	0.8
			$v_4 + v_2$	847	839	15191	0.8
29.1	16965	931	$v_3 + v_5$	930	924	15106	0.5
24.2	17050		$^{2}T_{1g} + v_{6}$				
17.6	17072	1038	$v_6 + v_2 + v_5$	1046	$(1074 \text{ sh})^a$		
8.0	17147 sh		${}^{2}T_{1g} + \nu_{4}$				
17.0	17159	1125	$v_3 + v_2$	1127	1122	14908	0.5
2.4	17241	1207	$3v_6 + v_2$	1194			
3.0	17274	1240	$2v_5 + v_3$	1240			
19.0	17352	1318	$3v_6 + 2v_5$	1307			
5.6	17396	1362	$v_4 + 2v_2$	1354			
12.8	17434		${}^{2}T_{1q}$ + v_{3}				
8.8	17470	1446	$v_3 + v_5 + v_2$	1437			
9.6	17548	1514	$3v_6 + v_5 + v_2$	1494			
8.8	17593	1559	$v_4 + 2v_1$	1540			
8.0	17646	1612	$3v_4 + v_1$	1620			
5.6	17662	1628	$v_3 + 2v_2$	1634			
2.4	17749	1715	$3v_6 + 2v_2$	1701			

Table 4. Vibrational frequencies in emission and absorption spectrum of a single crystal of $Cs₂MnF₆$ *at 4.5 ~*

^a From Raman spectrum. $-$ sh shoulder. $-$ ^b v_7 lattice mode.

the vibrational structure is difficult. Jahn-Teller instability, spin-orbit coupling (the single electron spin-orbit coupling parameter for the free Mn^{4+} ion is **415 cm- 1) and "solid state effects" like magnon sidebands (there are no data on magnetic susceptibilities of this complex) etc. have to be taken into consideration. Furthermore, fundamental frequencies derived for the excited state are not the same as those of the ground state because of the different geometrical configurations.** Vibrational structure was observed in the transition ${}^4T_{1q} \leftarrow {}^4A_{2q}$ in the absorption spectrum at 85 °K (data are available at this temperature only) which has regular spacings of 480 and 580 cm⁻¹ starting from the band centered **at 27030 cm- 1. These spacings (cf. Table 5) were assigned to the vibrational modes** v_2 and v_1 , respectively which corresponds to a decrease of approx. 4% relative to the frequencies in the ground state. Whereas the v_1 mode is symmetric and leaves the symmetry of the complex unchanged, the v_2 mode causes a tetragonal **distortion. The presence of this mode in a progression suggests that a Jahn-Teller distortion is present.**

The rich vibrational structure in the ${}^4T_{2g} \leftarrow {}^4A_{2g}$ should permit a more complete study (Fig. 3) (the label ${}^{4}T_{2g}$ will be used in the remainder of the text **although this state is probably split by spin-orbit coupling and/or a Jahn-Teller** effect). As in the case of the structure in the ${}^2E_a \leftarrow {}^4A_{2a}$ transition the intensity of

(1)	- 5	~9 (2)	(3)
	20355		27030
	20447		
		20614	27510
		20627	27660
		20640	27780
		20687	
		20730	28090
	20768	20799	
	20826	20859	28570
		20938	
	20969	21008	29150
		21181	
	21304	21331	29630
		21368	
	21404	21441	
	21459	21492	
		21570 sh	
		21659 sh	
	21791	21815	
	21834	21882	
		21949	
		22017 sh	
		22237 sh	
	22292	22306	
	22336	22381	
		22422	
	22495	22517	
	22743	22779	
	22831	22862	
	22910	22931	
	23245	23272	
	23354	23386	
	23447	23485	
	23781	23815	
	23923	23929	
	24067	24067	
	24301		

Table 5. Details of vibrational structure (in cm⁻¹) in ${}^4T_{2a} \leftarrow {}^4A_{2a}$ at 85 °K (1), at 4.5 °K (2) and in ${}^4T_{1g} \leftarrow {}^4A_{2g}$ at 85 °K (3)

sh shoulder.

Table 6. *The fundamental frequencies of* MnF_6^2 -

Vibration	Symmetry	Ground state			Excited states		
		(Raman)	$4\overline{A}_{2g}$ (IR)	(emission)	$\overline{{}^2E}_q$ (from absorption spectrum)	${}^4\overline{T}_{2g}$	$\overline{{}^4T}_{1g}$
v_1	a_{1g}	600		$(587)^a$	$(605 \pm 7)^{a}$	$575 + 15$	580
v_{2}	e_q	507	$(510)^{a}$	$(501 \pm 9)^{a}$	$(513 \pm 20)^{a}$	482 ± 10	480
v_{3}	t_{1u}		620	616	611	381?	
v_4	t_{1u}		340	334	335	232?	
v_{5}	t_{2g}	310		$(312 \pm 4)^{a}$	$(316 \pm 6)^{a}$		
v ₆	t_{2u}			229	225	172??	
v_{τ}	(lattice mode)			61	49		

a From combinations.

Fig. 3. Absorption spectrum of the *~T2o ~* 4A20 transition of CszMnF 6 at 85 ~ , at 4.5 ~

the bands are dependent on temperature suggesting that a vibronic intensity mechanism is operating. That the modes v_1 and v_2 are involved or combinations thereof can be seen from the progressions of regular spacings of 575 ± 15 and $482 \pm 10 \text{ cm}^{-1}$ originating at 20799, 20859 and 21008 cm⁻¹ (Table 5). From position, spacing and intensity (oscillator strength approx. 10^{-5}) one is tempted to assign these three bands to the antisymmetric v_6 , v_4 and v_3 modes coupled to an electronic transition. The distance to the band lowest in energy which appears on the tail of the intense band at 20799 cm^{-1} is 172, 232 and 381 cm⁻¹, respectively, which would be quite small, especially for " v_3 ".

The band lowest in energy, located at 20630 cm^{-1} could be an origin of the ${}^{4}T_{2a} \leftarrow {}^{4}A_{2a}$ transition considering its intensity and position: the band is weak and has an oscillator strength of approx. 10^{-6} which is in the range expected for a spin-allowed magnetic dipole transition $(f \sim 10^{-5})$ [30] and at higher temperatures hot bands appear on the low energy side of this "origin" (Fig. 3). Under increased resolution, however, the band splits into three components at 20614, 20627 and 20640 cm⁻¹, the first and the last appearing as shoulders.

Studies on K₂MnF₆ at 85 °K indicate that the origin of ${}^4T_2 \leftarrow {}^4A_2$ is split by 290 cm^{-1} . The strong static trigonal field of the crystal probably overrides the effects of spin-orbit coupling and Jahn-Teller instability. Progressions involving the symmetrical mode $v_1(a_1)$ only were observed [18].

A good starting point for a detailed analysis of the vibrational structure in the spin-allowed transitions of $Cs₂MnF₆$ would be a calculation of the spin-orbit and Jahn-Teller splittings which is left as a challenge to theorists.

Acknowledgements. The work was partially supported by the North Atlantic Treaty Organisation through Grant No. 213 and the National Research Council of Canada, and partially by a Graduate Followship of the University of British Columbia. Enlightening discussions with Dr. G. B. Porter and Dr. M. H. L. Pryce are gratefully acknowledged.

References

- 1. Forster, L. S.: Transition metal chemistry 5, 1, ed. by R. L. Carlin. New York and London: M. Dekker 1969.
- 2. Witzke, H.: Ph.D. Thesis, University of British Columbia (1970).
- 3. Condrate, R. A., Forster, L. S.: J. chem. Physics 48, 1514 (1968).
- 4. \leftarrow -- J. molecular Spectroscopy 24, 490 (1960).
- 5. Schläfer, H. L., Gausmann, H., Zander, H. U.: Inorg. Chem. 6, 1528 (1967).
- 6. Wood, D. L., Ferguson, J., Knox, K., Dillon, J. F., Jr.: J. chem. Physics 39, 890 (1963).
- 7. Pfeil, A.: Spectrochimica Acta 26A, 1341 (1970).
- 8. Bode, H., Wendt, W.: Z. anorg. Chem. 269, 165 (1952).
- 9. Palmer, W. G.: Exp. Inorg. Chem. 484 (1962).
- 10. McQuaker, N. R.: Ph.D. Thesis, University of British Columbia (1970).
- 11. Matwiyoff, N. A., Asprey, L. B.: Chem. Comm. 1970, 75.
- 12. Bode, H., Brockmann, R.: Z. anorg. Chem. 269, 173 (1952).
- 13. Wilson, E. B., Jr., Decius, J. C., Cross, D. C.: Molecular vibrations. New York: McGraw-Hill 1955.
- 14. Reisfeld, M. J.: J. molecular Spectroscopy 29, 120 (1969).
- 15. Classen, H. H.: J. chem. Physics 30, 968 (1959).
- 16. Behringer, J.: Raman spectroscopy, ed. by H. A. Szymanski, p. 168. New York: Plenum Press 1967.
- 17. Siebert, H., Eysel, H. H.: J. molecular Structure 4, 29 (1969).
- 18. Pfeil, A.: Unpublished results.
- 19. Woodward, L. A., Creighton, J. A.: Spectrocbimica Acta 17, 594 (1961).
- 20. Meyers, D. A., Cotton, F. A.: J. Amer. chem. Soc. 82, 5027 (1960).
- 21. Woodward, L. A., Ware, M. J.: Spectrochimica Acta 19, 775 (1963).
- 22. Anderson, L. E.: J. inorg. nuclear Chem. 3, 326 (1956).
- 23. Griffiths, J. E., Irish, D. E.: Inorg. Chem. 3, 1134 (1964).
- 24. Kriegsmann, H., Kessler, G.: Naturwissenschaften 47, 393 (1960).
- 25. Sugano, S., Schawlow, A. L., Varsanyi, F.: Physic. Rev. 120, 2045 (1960).
- 26. Imbusch, G. F.: AEC Access No. 42155, Rept. No. ML-1190, available OTS (1964).
- 27. Liehr, A. D., Ballhausen, C. J.: Physic. Rev. 106, 1161 (1957).
- 28. Birks, J. B., Dyson, D. J.: Proc. Roy. Soc. (London) A275, 135 (1963).
- 29. Strickler, S. J., Berg, R. A.: J. chem. Physics 37, 814 (1962).
- 30. McCaffery, A. J., Mason, S. F.: Trans. Faraday Soc. 59, 1 (1963).

Dr. A. Pfeil Department of Chemistry University of British Columbia Vancouver 8, Canada